SYLLABUS

1. Number and Name: 11:375:203 – PHYSICAL PRINCIPLES OF ENVIRONMENTAL SCIENCE

2. Credits and contact hours: 3 credits, 2-80 min. lecture periods per week

3. Instructor: Valdis Krumins

4. Text: There is no required text book for this class. Course materials including, lectures, problem sets, and solutions will be posted on Sakai (https://sakai.rutgers.edu).

References on Reserve at Chang Library:

5. Specific Course Information
 a. Catalog Description: Physical properties of water, air, and soils; energy and water in the earth system; kinetic and potential energy; and soil/plant/atmosphere relations.
 b. Prerequisites: 01:750:193 or 01:750:203 or 01:750:123 and 124.
 Corequisite: 01:750:194 or 01:750:204 or 01:750:227
 c. Course Type: Required

6. Course Goals
 a. Specific Instructional Outcomes:
 After this class, students will be able to:
 – Apply knowledge of mathematics, science and engineering (mass, energy and momentum transport principles) to solve environmental problems
 – Function on multidisciplinary teams
 – Provide quantitative answers to highly complex problems by making assumptions and communicating the knowledge gained and limitations imposed by those assumptions.
 – Communicate scientific calculations clearly in writing
 Students will have a basic understanding of
 – climate change,
 – the relationship between the residence time (or lifetime) of a compound in a reservoir and its concentration (or loading) in that reservoir,
the equations of motion governing mass, energy and momentum transport, and
the associated commonly used terminology.

b. Specific Student Outcomes addressed by the course include:
 a. Ability to apply knowledge of mathematics, science, engineering
 Instructional Activity: Concepts of mass, energy and momentum transport and
 example applications to environmental problem solving will be covered in lectures.
 Students will practice these skills by doing weekly problem sets and by addressing a
 problem of their own design.
 Assessment Activity: Student performance will be assessed through weekly problem
 sets, four quizzes and the final exam.

d. Ability to function in multidisciplinary teams
 Instructional Activity: The students will practice multidisciplinary team work and
 address a problem of their own design in teams of 3-4 students with 1-2 engineering
 students per team. (This class is predominantly comprised of engineering, meteorology
 and environmental science students)
 Assessment Activity: Evaluation of team project report and student feedback.

7. Topics:

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The nature of environmental problems</td>
</tr>
<tr>
<td>2-3</td>
<td>Introduction to Environmental Calculations</td>
</tr>
<tr>
<td>4-6</td>
<td>Phase partitioning/phase changes</td>
</tr>
<tr>
<td>7-15</td>
<td>Mass Transport</td>
</tr>
<tr>
<td>15-19</td>
<td>Energy Transport</td>
</tr>
<tr>
<td>20-28</td>
<td>Momentum balances and fluid flow</td>
</tr>
</tbody>
</table>

Grading: Problem sets - 20%
 Quizzes - 40% (10% each)
 Group Project – 10%
 Final exam - 30%

Prepared by: Valdis Krumins 05/23/17