Rutgers School of Environmental and Biological Sciences | Rutgers-New Brunswick

Research Team

Dr. Benjamin Lintner (PI)

Matthew Niznik (Ph.D. Student)
Research project:  Controls on South Pacific Convergence Zone rainfall in Coupled Model Intercomparison Project Phase 5 (CMIP5) models

Juan Perez Arango (Ph.D. Student)
Research project:  El Niño/Southern Oscillation (ENSO) teleconnections over tropical South America

Max Pike (Ph.D. Student)
Research project:  Application of self-organizing maps to rainfall in observations and CMIP5 models

Andrew Rohrman (Undergraduate)

Research project:  Analysis of Amazon climate variability

Alyssa Stansfield (Undergraduate)
Research project:  Analysis of Amazon climate variability

Dr. Bryan Raney (Programmer/Analyst)

Group Alumni


Dr. Alexis Berg (Postdoctoral Associate)
Current Position:  NSF Postdoctoral Research Fellow
Columbia University, International Research Institute for Climate and Society

Dr. Damianos Mantsis (Postdoctoral Associate)
Current Position: 

Lalitha Kommajosyula (M.S. Student)
Current Position: 

Note:  Links to article pdfs are provided below.  Access to some may be restricted. 

Convective margins theory and variability

The near-edge environments of tropical convection zones—or convective margins—are climatologically neither very wet nor very dry; however, convective margins are subject to significant hydroclimatic variability and extremes such as droughts across a range of timescales. The possibility that projected future climate change will strongly impact tropical convective margins, coupled with indications from paleoclimate proxies and simulations of dramatic past changes in these regions (e.g., the African Sahel), make a basic mechanistic understanding of their behavior critical. On-going work in this area focuses on application of process-based, semi-analytic prototypes to interpret convective margins in models and observations and development of diagnostics based on insights from these prototypes to analyze inflow wind-moisture-precipitation relationships over regional convective margins.

· Lintner, B.R., and J.D. Neelin, 2010:  Tropical South America/Atlantic sector convective margins and their relationship to low-level inflow.  J. Clim., 23, 2671—2685.  PDF @ AMS
· Lintner, B.R., and J.D. Neelin, 2009:  Soil moisture impacts on convective margins.  J. Hydrometeor., 10, 10261039.  PDF @ AMS
· Lintner, B.R., and J.D. Neelin, 2008: Eastern margin variability of the South Pacific Convergence Zone. Geophys. Res. Lett., 35, L16701, doi:10.1029/2008GL034298.  PDF @ WILEY
· Lintner, B.R., and J.D. Neelin, 2007: A prototype for convective margin shifts. Geophys. Res. Lett., 34, L05812, doi:10.1029/2006GL027305.  PDF @ WILEY

Controls on South Pacific Convergence Zone (SPCZ) precipitation

The South Pacific Convergence Zone (SPCZ), an area of intense deep convection and low-level convergence extending southeastward from the western Pacific warm pool into Southern Hemisphere midlatitudes, is a dominant feature of the tropical Pacific.  While the existence of the SPCZ has implications for the tropical (and global) climate system, many of its spatiotemporal characteristics, in both observations and state-of-the-art models, are still poorly understood or represented.  Current areas of SPCZ research in my group include:  (1) NSF-funded collaboration [NSF-AGS-1312865] with PhD student Matt Niznik and collaborator Dr. Ana Maria Duran-Quesada (University of Costa Rica) to analyze high frequency inflow wind-moisture-precipitation relationships along the South Pacific Convergence Zone as simulated in CMIP5 models and the FLEXPART Lagrangian parcel dispersion model; and (2) an NSF-funded collaboration [NSF-AGS-1103209] with Rutgers colleagues Professor Tony Broccoli and postdoctoral associate Damianos Mantsis to investigate spatial changes in SPCZ precipitation and the intensity of the atmospheric general circulation in past climate.

·  Lintner, B.R., B. Langenbrunner, B. Anderson, J.D. Neelin, and M.J. Niznik, 2014:  Characterization of model ensemble spread in simulations of the South Pacific Convergence Zone.  In preparation.  [Support from NSF-AGS-1312865]
· Niznik, M.J.*, B.R. Lintner, A.J. Matthews, and M.J. Widlansky, 2015:  The role of tropical-extratropical interaction and synoptic variability in maintaining the South Pacific Convergence Zone in CMIP5 models.  J. Clim. (in press), doi:10.1175/JCLI-D-14-00527.1.   [Support from NSF-AGS-1312865] Read highlights from this article. 
Niznik, M.J.*, and B.R. Lintner, 2013:  Circulation, moisture, and precipitation relationships along the South Pacific Convergence Zone in reanalyses and CMIP5 models.  J. Clim., 26, 10174—10192, doi:10.1175/JCLI-D-13-00263.1.  [Support from NSF-AGS-1312865]  PDF @ AMS  Read highlights from this article.
· Mantsis, D.F.*, B.R. Lintner, A.J. Broccoli, and M. Khodri, 2013:  Mechanisms of Mid-Holocene precipitation change in the South Pacific Convergence Zone.  J. Clim., 26, 69376953, doi:10.1175/JCLI-D-12-00674.1.  [Support from NSF-AGS-1103209]  PDF @ AMS Read highlights from this article.

El Niño/Southern Oscillation (ENSO) tropical teleconnections

My postdoctoral work with John Chiang (UC Berkeley) focused on elucidating how ENSO affects remote regions of the Tropics, in particular how the ENSO forcing is communicated from the equatorial Pacific to other areas in the Tropics.  With PhD student Juan Perez Arango, we are currently analyzing the spatial distribution of ENSO anomalies over tropical South America in CMIP5 models.

Park, H.-S., J.C.H. Chiang, B.R. Lintner, and G. J. Zhang, 2010: The delayed effect of major El Niño events on Indian monsoon rainfall. J. Clim.,  23, 932946.  PDF @ AMS
· Lintner, B.R., and J.C.H. Chiang, 2007:  Adjustment of the remote tropical climate to El Niño conditions. J. Clim., 20, 25442557, doi:10.1175/JCLI4138.1.  PDF @ AMS
· Lintner, B.R., and J.C.H. Chiang, 2005:  Reorganization of tropical climate during El Niño:  A weak temperature gradient approach. J. Clim., 18,  53125329, doi:10.1175/JCLI3580.1.  PDF @ AMS
· Chiang, J.C.H., and B.R. Lintner, 2005:  Mechanisms of remote tropical surface warming during El Niño. J. Clim., 18, 4130—4149, doi:10.1175/JCLI3529.1.  PDF @ AMS

Pathways of land-atmosphere coupling

The potential feedback between anomalous soil moisture conditions and precipitation is an important example of land surface-atmosphere coupling, but one which is both difficult to isolate in observations and poorly represented across the ensemble of current generation models.  In current NSF-funded collaboration [NSF-AGS-1035986] with Pierre Gentine (Columbia University) and Kirsten Findell (GFDL), along with former postdoctoral associate Alexis Berg, we have been developing metrics for quantifying soil moisture-precipitation feedbacks as they operate in the North American Regional Reanalysis (NARR) and in the GFDL model (AM2.1).  In parallel, we have been developing and applying idealized model frameworks for understanding the processes that control the coupling of the land surface and atmosphere, with the principal objective of bridging the gap between theory and observations.  In DOE-funded collaboration with Jung-Eun Lee (Brown University), Pierre Gentine, and Joe Berry (Carnegie Institution for Science) as well as collaborators in Brazil, we are evaluating how vegetation processes impact precipitation seasonality and variability in the Amazon.  We expect these efforts to lead to improved representation of land-atmosphere coupling in models.
· Mantsis, D.F.*, B.R. Lintner, K.L. Findell, and P. Gentine, 2015:  Soil moisture persistence in the GFDL climate model.  In preparation.
· Findell, K.L., P. Gentine, B.R. Lintner, and B. Guillod, 2015: Data length requirements for observational estimates of land-atmosphere coupling strength.  J. Hydrometeor (in revision). [Support from NSF-AGS-1035986]
· Lintner, B.R., P. Gentine, K.L. Findell, and G.D. Salvucci, 2015:  The Budyko and complementary relationships in an idealized model of large-scale land-atmosphere coupling.  Hydrol. Earth Sys. Sci. (in revision)[Support from NSF-AGS-1035986] 
· Berg, A.M.*, B.R. Lintner, K.L. Findell, S.I. Seneviratne, B. van den Hurk, F. Cheruy, S. Hagemann, D.M. Lawrence, S. Malyshev, A. Meier, and P. Gentine, 2015: Interannual coupling between summertime surface temperature and precipitation:  processes and implications for climate change. J. Clim. (in press).  [Support from NSF-AGS-1035986]
· Alter, R.E., Y. Fan, B.R. Lintner, and C.P. Weaver, 2015: Observational evidence for the influence of irrigation on summer precipitation intensity and totals in the Midwestern US. J. Hydrometeor (in press), doi:10.1175/JHM-D-140115.1.
Berg, A.M.*, B.R. Lintner, K.L. Findell, S. Malyshev, and P.C. Loikith, and P. Gentine, 2014:  Impact of soil moisture-atmosphere interactions on surface temperature distributions.  J. Clim., 27, 79767993.  [Support from NSF-AGS-1035986]  PDF @ AMS
· Guillod, B.P, B. Orlowsky, D. Miralles, A.J. Teuling, P. Blanken, N. Buchmann, P. Ciais, M. Ek, K.L. Findell, P. Gentine, B.R. Lintner, R.L. Scott, B. van den Hurk, and S.I. Seneviratne, 2014: Land surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors. Atm. Chem. Phys., 14, 83438367, doi:5194/acp-14-8343-2014.  PDF @ ACP
· Rochetin, N., B.R. Lintner, K.L. Findell, A.H. Sobel, and P. Gentine, 2014: Radiative convective equilibrium over a land surface. J. Clim., 27, 8611-8629.  PDF @ AMS.
· Aires, F., K.L. Findell, P. Gentine, B.R. Lintner, and C. Kerr, 2013: Neural network-based sensitivity analysis of summertime convection over the continental US. J. Clim., 27, 1958—1979, doi:10.1175/JCLI-D-13-00161.1 [Support from NSF-AGS-1035986]  PDF @ AMS
· Berg, A.M.*, K.L. Findell, B.R. Lintner, P. Gentine, and C. Kerr, 2013:  Precipitation sensitivity to surface heat fluxes over North America in reanalysis and models.  J. Hydrometeor., 14, 722743, doi:10.1175/JHM-D-12-0111.1 [Support from NSF-AGS-1035986]  PDF @ AMS
· Su, H., R.E. Dickinson, K.L. Findell, and B.R. Lintner, 2013:  How are spring snow conditions in central Canada related to early warm season precipitation?  J. Hydrometeor., 14, 787807, doi:10.1175/JHM-D-12-029.1  [Support from NSF-AGS-1035986]  PDF @ AMS
· Lintner, B.R., P. Gentine, K.L. Findell, F. D'Andrea, A.H. Sobel, and G.D. Salvucci, 2013:  An idealized prototype for large-scale land-atmosphere coupling.  J. Clim., 26, 23792389, doi:10.1175/JCLI-D-11-000561.1 [Support from NSF-AGS-1035986]  PDF @ AMS
· Gentine, P., P. D'Odorico, B.R. Lintner, G. Sivandran, and G.D. Salvucci, 2012:  Interdependence of climate, soil, and vegetation as constrained by the Budyko curve.  Geophys. Res. Lett, 39, L19404, doi:10.1029/2012GL053492. PDF @ WILEY 
· Lee, J.-E., B.R. Lintner, J.D. Neelin, X. Jiang, P. Gentine, C.K. Boyce, J.B. Fisher, J.T. Perron, T.L. Kubar, J. Lee, and J. Worden, 2012:  Reduction of tropical land region precipitation variability via transpiration.  Geophys. Res. Lett., 39, L19704, doi:10.1029/2012GL053417. [Support from NSF-AGS-1035986]  PDF @ WILEY
· Gentine, P., T.J. Troy, B.R. Lintner, and K.L. Findell, 2012:  Scaling in surface hydrology.  J. Contemp. Water Res. Education, 47, 28—40. [Support from NSF-AGS-1035986] 
· Lee, J.-E., B.R. Lintner, C.K. Boyce, and P.J. Lawrence, 2011:  Land use change exacerbates tropical South American drought by sea surface temperature variability.  Geophys Res. Lett. 38, L19706, doi:10.1029/2011GL049066. [Support from NSF-AGS-1035986] PDF @ WILEY
· Findell, K.L., P. Gentine, B.R. Lintner, and C. Kerr, 2011:  Probability of afternoon precipitation in eastern US and Mexico enhanced by high evaporationNature Geosci., 4, 434—439, doi:10.1038/ngeo1174. [Support from NSF-AGS-1035986]  PDF @ Nature Geoscience  Read the GFDL web highlight of this article.

Methodologies for analyzing climate data

The distribution of water vapor in the atmosphere has important implications climate processes such as radiative transfer and deep convection.  Research in this area has emphasized relationships between tropospheric water vapor or trace constituents (e.g., CO), deep convection, and the vertical and horizontal characteristics of the flow, in particular how the statistical properties of the pdfs (e.g., longer-than-Gaussian "tails") reflect underlying convective or transport processes.  Continuing efforts here are devoted to quantifying high-frequency, site-level pdfs (e.g., the Nauru Atmospheric Radiation Measurement climate observing facility in the western Pacific) in observations and models.  Another recent area of activity, in collaboration with Dr. Paul Loikith and colleagues at JPL, involves implementation of pdf-based diagnostics for model intercomparison.  With Master's student Max Pike, we have begun to use self-organizing maps to evaluate precipitation features in observations and CMIP5 models.

· DeAngelis, A.M., A.J. Broccoli, B.R. Lintner, and M.J. Niznik, 2015:  Projected regional changes in the frequency distribution of daily precipitation in CMIP5 simulations.  In preparation.
· Langenbrunner, B., J.D. Neelin, B.R. Lintner, and B.T. Anderson, 2015:  Regional patterns of precipitation change uncertainty among CMIP5 models, with a focus on the midlatitude Pacific storm track.  J. Clim. (submitted).
· Loikith, P.C., D.E. Waliser, H. Lee, J.D. Neelin, B.R. Lintner, S. McGinnis, L.O. Mearns, and J. Kim, 2015:  Evaluation of the ability of the NARCCAP ensemble of regional climate simulations to represent large-scale meteorological patterns associated with extreme temperatures.  Clim. Dyn. (revised).
· Anderson, B.T.,
B.R. Lintner, B. Langenbrunner, J.D. Neelin, E. Hawkins, and J. Syktus
, 2015:  Sensitivity of terrestrial precipitation trends to the structural evolution of sea surface temperature.  Geophys. Res. Lett. (in press), doi:10.1002/2014GL062593.
Loikith, P.C., D.E. Waliser, J. Kim, H. Lee,
J.D. Neelin, B.R. Lintner, S. McGinnis, C. Mattmann, and L.O. Mearns, 2015:  Surface temperature probability distribution functions in the NARCCAP Hindcast Experiment:  Evaluation methodology, metrics, and results.  J. Clim., 28, 978
997, doi:10.1175/JCLI-D-13-00457.1.
Loikith, P.C., B.R. Lintner, J. Kim, H. Lee,
J.D. Neelin, and D.E. Waliser, 2013:  Classifying reanalysis surface temperature probability density functions (pdfs) over North America with cluster analysis.  Geophys. Res. Lett., 40, doi:10.1002/grl.50688.  PDF @ WILEY
· Lintner, B.R., M. Biasutti, N.S. Diffenbaugh, J.-E. Lee, M.J. Niznik*, and K.L. Findell, 2012:  Amplification of wet and dry month occurrence in response to global warming.  J. Geophys. Res.-Atmos., 117, D11106, doi:10.1029/2012JD017499PDF @ WILEY  Read the Nature research highlight of this article.
· Lintner, B.R., C.E. Holloway, and J.D. Neelin, 2011:  Column water vapor statistics and their relationship to deep convection and vertical and horizontal circulation and moisture structure at Nauru.  J. Clim, 24, 5454—5466.  PDF @ AMS
· Neelin, J.D., B.R. Lintner, B. Tian, Q.B. Li, L. Zhang, P.K. Patra, M.T. Chahine, and S.N. Stechmann, 2010: Long tails in deep columns of natural and anthropogenic tracers. Geophys. Res. Lett., 37, L05804, doi:10.1029/2009GL041276.  PDF @ WILEY

Spatiotemporal distribution and transport of tropopsheric trace constituents

My PhD research with Professor Inez Fung (UC Berkeley) focused on identifying the controls on the space and time variability of carbon dioxide and other minor tropospheric constituents ("tracers"), with an emphasis on isolating the role of large-scale circulation and atmospheric transport.  More recently, this research area has intersected with other areas of inquiry such as convective margins and tracer pdfs, as we address how insights from tracers may inform understanding of tropospheric circulation, dynamics, and convection.

· Patra, P.K., M.C. Krol, S.A. Montzka, T. Arnold, E.L. Atlas, B.R. Lintner, B.B. Stephens, B. Xiang, J.W. Elkins, P.J. Fraser, A. Ghosh, E.J. Hintsa, D.F. Hurst, K. Ishijima, P.B. Krummel, B.R. Miller, K. Miyazaki, F.L. Moore, J. Muhle, S. O'Doherty, R.G. Prinn, L.P. Steele, M. Takigawa, H.J. Wang, R.F. Weiss, S.C. Wofsy, and D. Young, 2014:  Observational evidence for interhemispheric hydroxyl parity.  Nature, 519, 219—223, doi:10.1038/nature13721.  PDF @ Nature
· Lee, J.-E., C. Risi, I.Y. Fung, J.R. Worden, R. Scheepmaker, B.R. Lintner, and C. Frankenberg, 2012: Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. J. Geophys. Res.-Atmos, 117, D151112, doi:10.1029/2011JD017133.  [Support from NSF-AGS-1103209]  PDF @ WILEY
· Rodgers, K.B., S.E. Fletcher, C. Beaulieu, D. Bianchi, E.D. Galbraith, A. Gnanadesikan, A.G. Hogg, D. Iudicone, B.R. Lintner, T. Naegler, P.J. Reimer, J.L. Sarmiento, R.D. Slater, and X. Zhiang, 2011, Atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Clim. of the Past, 7, 1123—1138, doi:10.5194/cp-7-1123-2011.  PDf @ CoP
· Lee, J.-E., R. Pierrehumbert, A. Swann, and B.R. Lintner, 2009:  Sensitivity of stable water isotopic values to convective parameterization schemes.  Geophys. Res. Lett., 36, L23801, 2009GL040880.  PDF @ AGU
· Patra, P.K., M. Takigawa, G.S. Dutton, K. Uhse, K. Ishijima, B.R. Lintner, K.  Miyazaki, and J.W. Elkins, 2009:  Transport mechanisms for synoptic, seasonal and interannual SF6 variations and “age” of air in the troposphere.  Atmos. Chem. Phys., 9, 1209—1225.  PDF @ ACP
· Buermann, W., B.R. Lintner, C.D. Koven, A. Angert, J.E. Pinzon, C.J. Tucker, and I.Y. Fung, 2007: The changing carbon cycle at Mauna Loa Observatory. Proc. Nat. Acad. Sci., 104, 4249—4254, doi:10.1073/pnas.0611224104.  PDF @ PNAS
· Lintner, B.R., W. Buermann, C.D. Koven, and I.Y. Fung, 2006:  Seasonal circulation and Mauna Loa CO2 variability. J. Geophys. Res.-Atmos., 111, D13104, doi:10.1029/2005JD006535.  PDF @ WILEY
Lintner, B.R., A.B. Gilliland, and I.Y. Fung, 2004:  Mechanisms of convection induced modulation of passive tracer interhemispheric transport interannual variability. J. Geophys. Res.-Atmos., 109, D13102, doi:1029/2003JD004306.  PDF @ AGU
Lintner, B.R., 2002:  Characterizing global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis. Geophys. Res. Lett., 29, 1921, doi:102910/2001GL014419.  PDF @ WILEY

Climate Dynamics and Modeling (Miscellaneous)

· Park, H.-S., B.R. Lintner, W.R. Boos, and K.-H. Seo, 2015:   The effect of mid-latitude transient eddies on monsoonal southerlies over East China.  J. Clim. (submitted).
· D'Andrea, F., P. Gentine, A.K. Betts, and B.R. Lintner, 2014:  Triggering of deep convection with a probabilistic plume model.  J. Atmos. Sci., 71, 3881—3901, doi:10.1175/JAS-D-13-0340.1.  PDF @ AMS
· Mantsis, D.F.*, B.R. Lintner, A.J. Broccoli, A.C. Clement, M.P. Erb, and H.-S. Park, 2014:  The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim., 27, 5504—5516 doi:10.1175/JCLI-D-13-00526.1.  [Support from NSF-AGS-1103209].  PDF @ AMS
· Gentine, P., A.K. Betts, K.L. Findell, B.R. Lintner, C.C. van Heerwaarden, and F. D’Andrea, 2013:  A probabilistic-bulk model of mixed layer and convection:  2) Shallow convection case.  J. Atmos. Sci., 70, 15571576, doi:10.1175/JAS-D-12-0146.1.  [Support from NSF-AGS-1035986]  PDF @ AMS 
· Gentine, P., A.K. Betts, K.L. Findell, B.R. Lintner, C.C. van Heerwaarden, A. Tzella, and F. D’Andrea, 2013:  A probabilistic-bulk model of mixed layer and convection:  1) Clear-sky case.  J. Atmos. Sci., 70, 15431556, doi:10.1175/JAS-D-12-0145.1 [Support from NSF-AGS-1035986]  PDF @ AMS
· Lintner, B.R., G. Bellon, A.H. Sobel, D. Kim, and J.D. Neelin, 2012:  Implementation of the Quasi-Equilibrium Tropical Circulation Model 2 (QTCM2):  Global simulations and convection sensitivity to free tropospheric moisture. J. Adv. Model. Earth Sys., 4, M12002, doi:10.1029/2012MS000174. [Support from NSF-AGS-1103209]   PDF @ WILEY 
· Lintner, B.R., and J.D. Neelin, 2008:  Time scales and spatial patterns of passive ocean-atmosphere decay modes. J. Clim., 21, 2187—2203.  PDF @ AMS
· Buermann, W., B.R. Lintner, and C. Bonfils, 2005:  A wintertime Arctic Oscillation influence on early season Indian Ocean monsoon intensity. J. Clim., 18, 2247—2269, doi:10.1175/JCLI3377.1.  PDF @ AMS

*Postdoctoral researcher or graduate student

Interested in learning more about or joining my group? Email me

Environmental Sciences · 14 College Farm Road · New Brunswick, NJ 08901 · 848-932-5731 ·